Robust Control of Electro-Hydraulic Actuator Systems Using the Adaptive Back-Stepping Control Scheme
نویسندگان
چکیده
Conventional hydraulic actuator (CHA) systems have been widely used as power units because they can generate very large power compared to their size. In general, a CHA system consists of an electric motor, a pump, a reservoir, various valves, hoses, which are used to transfer the working fluid and an actuator. CHA systems, however, have some problems such as environmental pollution caused by the leakage of the working fluid, maintenance load, heavy weight and limited installation space. These shortcomings can be overcome by compactly integrating the components of CHA systems and by applying a suitable control scheme for the electric motor. To overcome these shortcomings of CHA systems, electro-hydraulic actuator (EHA) systems have been developed, having merits such as smaller size, higher energy efficiency and faster response than existing CHA systems (Kokotovic, 1999). However, for the robust position control of EHA systems, system uncertainties such as the friction between the piston and cylinder and the pump leakage coefficient have to be considered. To solve these system uncertainty problems of EHA systems and to achieve the robustness of EHA systems with system disturbance and bounded parameter uncertainties, Wang et. al. presented a sliding mode control and a variable structure filter based on the variable structure system (Wang, 2005). Perron et. al proposed a sliding mode control scheme for the robust position control of EHA systems showing volumetric capacity perturbation of the pump (Perron, 2005). However, these control methods have some chattering problem due to the variable structure control scheme. The chattering vibrates the system and may reduce the life cycle of the system. Jun et. al. presented a fuzzy logic self-tuning PID controller for regulating the BLDC motor of EHA systems which has nonlinear characteristics such as the saturation of the motor power and dead-zone due to the static friction (Jun, 2004). Chinniah et. al. used a robust extended Kalman filter, which can estimate the viscous friction and effective bulk modulus, to detect faults in EHA systems (Chinniah, 2006). Kaddissi et. al. applied a robust indirect adaptive back-stepping control (ABSC) scheme to EHA systems having perturbations of the viscous friction coefficient and the effective bulk modulus due to temperature variations (Kaddissi, 2006). However, in spite of the variation of the effective bulk modulus due to the temperature and pressure variations, Chinniah et. al. considered
منابع مشابه
Robust position control of electro-hydraulic actuator systems using the adaptive back-stepping control scheme
In general, the position control of electro-hydraulic actuator (EHA) systems is difficult because of system uncertainties such as Coulomb friction, viscous friction, and pump leakage coefficient. Even if the exact values of the friction and pump leakage coefficient may be obtained through experiment, the identification procedure is very complicated and requires much effort. In addition, the ide...
متن کاملRobust Adaptive Actuator Failure Compensation of MIMO Systems with Unknown State Delays
In this paper, a robust adaptive actuator failure compensation control scheme is proposed for a class of multi input multi output linear systems with unknown time-varying state delay and in the presence of unknown actuator failures and external disturbance. The adaptive controller structure is designed based on the SPR-Lyapunov approach to achieve the control objective under the specific assump...
متن کاملRobust Control of Hydraulic Actuator Using Back-stepping Sliding Mode Controller
ABSTRACT: To develop an unmanned automatic excavator system the control performance of hydraulic actuators should be guaranteed. However, hydraulic actuators with single rod cylinder have inherently severe nonlinearities that significantly affect to the command following performance of end-effect. PID control system widely used in industries is not proper to compensate the nonlinearities and it...
متن کاملRobust Control of a Quadrotor in the Presence of Actuators' Failure
Today, robots and unmanned aerial vehicles are being used extensively in modern societies. Due to a wide range of applications, it has attracted much attention among scientists over the past decades. This paper deals with the problem of the stability of a four-rotor flying robot called quadrotor, which is an under-actuated system, in the presence of operator or sensor failures. The dynamica...
متن کاملFault Detection Based on Type 2 Fuzzy system for Single-Rod Electrohydraulic Actuator
Electro-hydraulic systems with regards to the their specific features and applications among other industrial systems including mechanical, electrical and pneumatic systems, have been widely taken into consideration by the scientists and researchers. Due to the fact that the electro-hydraulic system is inherently a nonlinear system, has some problems such as signals saturation, nonlinear effici...
متن کامل